Force generation in kinesin hinges on cover-neck bundle formation.
نویسندگان
چکیده
In kinesin motors, a fundamental question concerns the mechanism by which ATP binding generates the force required for walking. Analysis of available structures combined with molecular dynamics simulations demonstrates that the conformational change of the neck linker involves the nine-residue-long N-terminal region, the cover strand, as an element that is essential for force generation. Upon ATP binding, it forms a beta sheet with the neck linker, the cover-neck bundle, which induces the forward motion of the neck linker, followed by a latch-type binding to the motor head. The estimated stall force and anisotropic response to external loads calculated from the model agree with force-clamp measurements. The proposed mechanism for force generation by the cover-neck bundle formation appears to apply to several kinesin families. It also elucidates the design principle of kinesin as the smallest known processive motor.
منابع مشابه
Kinesin's cover-neck bundle folds forward to generate force.
Each step of the kinesin motor involves a force-generating molecular rearrangement. Although significant progress has been made in elucidating the broad features of the kinesin mechanochemical cycle, molecular details of the force generation mechanism remain a mystery. Recent molecular dynamics simulations have suggested a mechanism in which the forward drive is produced when the N-terminal cov...
متن کاملModular aspects of kinesin force generation machinery.
The motor head of kinesin carries out microtubule binding, ATP hydrolysis, and force generation. Despite a high level of sequence and structural conservation, subtle variations in subdomains of the motor head determine family-specific properties. In particular, both Kinesin-1 (Kin-1) and Kinesin-5 (Kin-5) walk processively to the microtubule plus-end, yet show distinct motility characteristics ...
متن کاملInitial conformation of kinesin's neck linker
How ATP binding initiates the docking process of kinesin’s neck linker is a key question in understanding kinesin mechanism. It is believed that the formation of an extra turn structure by the first three amino acids of neck linker (LYS325, THR326, ILE327 in 2KIN) is crucial for initiating the docking process. But the initial conformation of neck linker (specially the three amino acids of the e...
متن کاملSelf-assembly of the cell wall
Reach out and gRab something W hen families cooperate, their effects can be far reaching, according to Suzanne Pfeffer (Stanford University, Stanford, CA) and colleagues, whose study of Rab6 and Arl1 shows that these members of different GTPase families work together to anchor a vesicletethering protein onto the Golgi. The tethering protein, GCC185, is thought to bind to transport vesicles dest...
متن کاملCYK4 Promotes Antiparallel Microtubule Bundling by Optimizing MKLP1 Neck Conformation
Centralspindlin, a constitutive 2:2 heterotetramer of MKLP1 (a kinesin-6) and the non-motor subunit CYK4, plays important roles in cytokinesis. It is crucial for the formation of central spindle microtubule bundle structure. Its accumulation at the central antiparallel overlap zone is key for recruitment and regulation of downstream cytokinesis factors and for stable anchoring of the plasma mem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structure
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2008